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Abstract

In this work, the generalized
(
G′

G

)
-expansion method is presented to seek some

new exact solutions of Shallow Water wave equation with variable coefficients.
As a result, more explicit traveling wave solutions involving arbitrary param-
eters are found out, which are expressed in terms of hyperbolic functions, the
trigonometric functions and rational functions. When the parameters are taken
special values, different types of wave solutions can be obtained.
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1 Introduction

The nonlinear partial differential equations in mathematical physics have played a
major role in a great variety of contexts, such as physics, biology, engineering, fluid
flow, signal processing, system identification, control theory, finance, and fractional
dynamics. Wide classes of analytical methods have been proposed for finding the
exact solutions of these nonlinear partial differential equations. For integrable non-
linear differential equations, the inverse scattering transform method [1], the Hirota
method [2], the truncated Painlevé expansion method [3], the Bäcklund transform
method [4, 5] and the exp-function method [6, 7, 8] are used in looking for the exact
solutions of nonlinear partial differential equations. Among non-integrable nonlinear
differential equations, there is a wide class of the equations that referred to as the
partially integrable, because these equations become integrable for some values of
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their parameters. There are many different methods to look for the exact solutions
of these equations. The most famous algorithms are the Weierstrass elliptic function
function method [9], the tanh- function method [10, 11]and the Jacobi elliptic func-
tion expansion method [12, 13] and so on.
However to our knowledge, most of aforementioned methods are related to the con-
stant coefficient models. But the physical situations in which nonlinear equations
arise tend to be highly idealized because of assumption of constant coefficients. Be-
cause of this, the study of nonlinear equations with variable coefficients has attracted
much attention [14, 15, 16].
Among the other methods, a new method called Generalized

(
G′

G

)
- Expansion method

[17, 18] has been proposed to seek exact solutions of nonlinear partial differential
equations. Being concise and straightforward, this method can be applied to various
nonlinear partial differential equations with variable coefficients. As a result, hyper-
bolic function solutions, trigonometric function solutions and rational solutions with
various parameters are obtained.
This method is based on the assumptions that the traveling wave solutions can be
expressed by a polynomial in

(
G′

G

)
where G = G(θ) satisfies the following second

order linear ordinary differential equation

G′′(θ) + λG′(θ) + µG(θ) = 0, (1.1)

where θ = p(t)x+ q(t), p(t) and q(t) are functions to be determined.
This paper is organized as follows: In section 2, we summarize the generalized

(
G′

G

)
-

expansion method. We apply the method to physically important nonlinear evolution
equation, namely, shallow water wave equation with variable coefficients in section
3 and abundant exact solutions are obtained which included the hyperbolic func-
tions, the trigonometric functions and rational functions. Finally, we record some
concluding remarks in last section.

2 Description of The Generalized
(
G′

G

)
-Expansion

Method [17]

Consider the nonlinear partial differential equation with independent variables X =
(x, y, z, ..., t) and dependent variable u in the following form:

F (u, ut, ux, uy, uz, ...uxt, uyt, uzt, utt, ...) = 0, (2.1)

where u = u(x, y, z, ...t) is an unknown function, F is a polynomial in u = u(x, y, z, ...t)
and its various partial derivatives, in which the highest order derivatives and nonlin-
ear terms are involved. In the following, we give the main steps of the generalized(
G′

G

)
-expansion method.

Step 1: We suppose that the solution of Eq. (2.1) can be expressed by a polynomial
in

(
G′

G

)
as follows:

u = α0(X) +
m∑
i=1

αi(X)

(
G′

G

)i

, αm(X) ̸= 0, (2.2)
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where α0(X), αi(X), (i = 1, 2, ...,m) and θ = θ(X) are all functions of X, to be
determined later and G = G(θ) satisfies following equation

G′′(θ) + λG′(θ) + µG(θ) = 0, (2.3)

where θ = p(t)x+ q(t), p(t) and q(t) are functions to be determined.
Step 2: In order to determine u explicitly, we firstly find the value of integer m by
balancing the highest order nonlinear term(s) and the highest order partial derivative
of u in Eq. (1.1).
Step 3: Substitute (2.2) along with Eq. (2.3) into Eq. (2.1) and collect all terms
with the same order of

(
G′

G

)
together, the left hand side of Eq. (2.1) is converted into

a polynomial in
(
G′

G

)
. Then by setting each coefficient of this polynomial to zero, we

derive a set of over-determined partial differential equations for α0(X), αi(X) and ζ.
Step 4: Solve the system of over-determined partial differential equations obtained
in Step 3 for α0(X), αi(X) and ζ.
Step 5: Use the results obtained in above steps to derive the solutions of Eq. (2.1)
depending on

(
G′

G

)
, since the solutions of Eq. (2.3) have been well known to us

depending on the sign of the discriminant ∆ = λ2 − 4µ, then the exact solutions of
Eq. (2.1) are furnished.

3 Application of Generalized
(
G′

G

)
-Expansion Method

to Shallow Water Wave Equation with Variable

Coefficients

In this section, we will use generalized
(
G′

G

)
-expansion method to derive certain new

solutions of shallow water wave equation with variable coefficients, which is very
important nonlinear partial differential equations in the mathematical physics and
have been paid attention by many researchers.
We start with the following shallow water wave equation with variable coefficients

ut + θ(t)ux + β(t)uux + σ(t)uxuxx + δ(t)uxxx + ω(t)uuxxx + ρ(t)uxxxxx = 0, (3.1)

where θ(t), β(t), σ(t), δ(t), ω(t) and ρ(t) are arbitrary functions of t. According to
the method described above in section 2, by balancing the highest order nonlinear
term and the highest order partial derivative term of u in Equation (3.1), we obtain
m = 2. In order to search for explicit solutions, we suppose that equation (3.1) has
the following solution expressed by a polynomial in

(
G′

G

)
as follows:

u = α0(t) + α1(t)

(
G′

G

)
+ α2(t)

(
G′

G

)2

, (3.2)

where α2(t) ̸= 0 and G = G(ζ). Substituting (3.2) into (3.1) and using (2.3), col-
lecting all terms with the same order of

(
G′

G

)
together, the left-hand side of Eq.

(3.1) is converted into polynomial in xj
(
G′

G

)
, (j = 0, 1). Setting each coefficient of
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this polynomial to zero, we derive a set of overdetermined differential equations for
α0(t), α1(t), α2(t), α3(t), α4(t), p(t) and q(t). Solving this set of equations, we have
obtained the following results:
Case 1:

q(t) = q(t), β(t) = β(t), ρ(t) = ρ(t), α0(t) = c3, α1(t) = c2λ, α2(t) = c2,

ω(t) =
48ρ(t)c21

c2
, ω(t) =

−156ρ(t)c21
c2

,

δ(t) = 1
12

48ρ(t)c41c2λ
2+384ρ(t)c41c2µ−β(t)c22−576ρ(t)c41c3

c21c2
,

θ(t) =
−(12q′(t)−480ρ(t)c51λ

2µ+12c1β(t)c3−c1c2λ2β(t)+960c51µ
2ρ(t)+60ρ(t)c51λ

4−8c1c2µβ(t))

12c1
,

(3.3)
where c1, c2 and c3 are arbitrary constants.
Substituting the general solutions of (2.3) into (3.2) and using (3.3), we have three
types of exact solutions of (3.1) as follows:
When λ2 − 4µ > 0, we have obtained hyperbolic function solution in the form

u(x, t) = c3 + c2λ

(
1
2

√
(λ2−4µ)(a1 sinh(

1
2
((c1x+q(t))

√
(λ2−4µ)))+a2 cosh(

1
2
((c1x+q(t))

√
(λ2−4µ))))

(a2 sinh(
1
2
((c1x+q(t))

√
(λ2−4µ)))+a1 cosh(

1
2
((c1x+q(t))

√
(λ2−4µ))))

− λ
2

)
+c2

(
1
2

√
(λ2−4µ)(a1 sinh(

1
2
((c1x+q(t))

√
(λ2−4µ)))+a2 cosh(

1
2
((c1x+q(t))

√
(λ2−4µ))))

(a2 sinh(
1
2
((c1x+q(t))

√
(λ2−4µ)))+a1 cosh(

1
2
((c1x+q(t))

√
(λ2−4µ))))

− λ
2

)2

.

(3.4)

Figure 1: Graphical representation of solution (3.4), for λ = 4, µ = 2, c2 = 2, c3 =
1, a1 = 1, a2 = 2, c1 = 2 and q(t) = t

When λ2 − 4µ < 0, we have trigonometric function solution

u(x, t) = c3 + c2λ

(
1
2

√
(−λ2+4µ)(−a2 sin(

1
2
((c1x+q(t))

√
(−λ2+4µ)))+a1 cos(

1
2
((c1x+q(t))

√
(−λ2+4µ))))

(a1 sin(
1
2
((c1x+q(t))

√
(−λ2+4µ)))+a2 cos(

1
2
((c1x+q(t))

√
(−λ2+4µ))))

− λ
2

)
+c2

(
1
2

√
(−λ2+4µ)(−a2 sin(

1
2
((c1x+q(t))

√
(−λ2+4µ)))+a1 cos(

1
2
((c1x+q(t))

√
(−λ2+4µ))))

(a1 sin(
1
2
((c1x+q(t))

√
(−λ2+4µ)))+a2 cos(

1
2
((c1x+q(t))

√
(−λ2+4µ))))

− λ
2

)2

.

(3.5)
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Figure 2: Graphical representation of solution (3.5), when λ = 2, µ = 4, c2 = 2, c3 =
1, a1 = 1, a2 = 2, c1 = 2 and q(t) = t

When λ2 − 4µ = 0, we get rational solution as follows:

u(x, t) = c3 + c2λ
(

A2

A1+A2((c1x+q(t)))
− λ

2

)
+ c2

(
A2

A1+A2((c1x+q(t)))
− λ

2

)2

, (3.6)

where A1, A2, a1 and a2 are arbitrary constants.

Figure 3: Graphical representation of solution (3.6), when λ = 2, c2 = 2, c3 = 1, A1 =
1, A2 = 2, c1 = 2 and q(t) = t
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Case 2:

q(t) = q(t), ρ(t) = ρ(t), α0(t) = c3, α1(t) = c2(λ± 3
√

−λ2 + 4µ), α2(t) = c2,

ω(t) =
48ρ(t)c21

c2
, σ(t) =

−156ρ(t)c21
c2

,

δ(t) =
−(25ρ(t)c21c2λ

2−52ρ(t)c21c2µ−24ρ(t)c21λc2(λ±3
√

−λ2+4µ)+48c21c3ρ(t))

c2
,

θ(t) =
−(192ρ(t)µc51c3+c2q′(t)+144ρ(t)λ2µc51c2−192ρ(t)µ2c51c2−24ρ(t)λ4c51c2−48ρ(t)λ2c51c3)

c1c2

+
−(24ρ(t)λ3c51c2(λ±3

√
−λ2+4µ)−96ρ(t)c51c2µλ(λ±3

√
−λ2+4µ))

c1c2
,

(3.7)
where c1, c2 and c3 are arbitrary constants.
Consequently, we have the following three types of exact solutions of (3.1):
If λ2 − 4µ > 0, we obtain the hyperbolic function solution in the form

u(x, t) = c3 + (λ± 3
√

−λ2 + 4µ)c2

(
1
2

√
(λ2−4µ)(a1 sinh(Λ1)+a2 cosh(Λ1))

(a2 sinh(Λ1)+a1 cosh(Λ1))
− λ

2

)
+c2

(
1
2

√
(λ2−4µ)(a1 sinh(Λ1)+a2 cosh(Λ1))

(a2 sinh(Λ1)+a1 cosh(Λ1))
− λ

2

)2

.

(3.8)

If λ2 − 4µ < 0, we have trigonometric function solution in the following form:

u(x, t) = c3 + (λ± 3
√
−λ2 + 4µ)c2

(
1
2

√
(−λ2+4µ)(−a2 sin(Λ2)+a1 cos(Λ2))

(a1 sin(Λ2)+a2 cos(Λ2))
− λ

2

)
+c2

(
1
2

√
(−λ2+4µ)(−a2 sin(Λ2)+a1 cos(Λ2))

(Λ2)+a2 cos(Λ2))
− λ

2

)2

.

(3.9)

If λ2 − 4µ = 0, we get rational solution as follows:

u(x, t) = c3 + c2(λ± 3
√

−λ2 + 4µ)
(

A2

A1+A2((c1x+q(t)))
− λ

2

)
+ c2

(
A2

A1+A2((c1x+q(t)))
− λ

2

)2

(3.10)
where A1, A2, a1, a2 are arbitrary constants and Λ1 =

1
2
((c1x+ q(t))

√
(λ2 − 4µ)) and

Λ2 =
1
2
((c1x+ q(t))

√(
−λ2 + 4µ

)
).

Case 3:

q(t) = q(t), ρ(t) = ρ(t), α0(t) = c3, α1(t) = c2(λ±
√
(λ2 − 4µ)), α2(t) = c2,

ω(t) =
48ρ(t)c21

c2
, σ(t) =

−156ρ(t)c21
c2

,

δ(t) =
−(−24ρ(t)c21c2λ((λ±

√
(λ2−4µ)))+13ρ(t)c21c2λ

2−4ρ(t)c21µc2+48c21c3ρ(t))

c2
,

θ(t) =
−(−36ρ(t)λ4c2c51+c2q′(t)+216ρ(t)c51c2λ

2µ−288ρ(t)c2µ2c51−144ρ(t)λµc51(c2(λ±
√

(λ2−4µ))))

c1c2

+
−(288ρ(t)µc51c3−72ρ(t)λ2c51c3+36ρ(t)λ3c51c2(λ±

√
(λ2−4µ)))

c1c2
,

(3.11)
where c1, c2 and c3 are arbitrary constants.
When λ2 − 4µ > 0, we derived hyperbolic function solution of Eq. (3.1) in the
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following form

u(x, t) = c3 + c2(λ±
√
(λ2 − 4µ))

(
1
2

√
(λ2−4µ)(a1 sinh(Λ1)+a2 cosh(Λ1))

(a2 sinh(Λ1)+a1 cosh(Λ1))
− λ

2

)
+c2

(
1
2

√
(λ2−4µ)(a1 sinh(Λ1)+a2 cosh(Λ1))

(a2 sinh(Λ1)+a1 cosh(Λ1))
− λ

2

)2

.

(3.12)

When λ2 − 4µ < 0, we have trigonometric function solution of Eq. (3.1) as follows:

u(x, t) = c3 + c2(λ±
√

(λ2 − 4µ))

(
1
2

√
(−λ2+4µ)(−a2 sin(Λ2)+a1 cos(Λ2))

(a1 sin(Λ2)+a2 cos(Λ2))
− λ

2

)
+c2

(
1
2

√
(−λ2+4µ)(−a2 sin(Λ2)+a1 cos(Λ2))

(a1 sin(Λ2)+a2 cos(Λ2))
− λ

2

)2

.

(3.13)

When λ2 − 4µ = 0, we get rational solution of Eq. (3.1) as follows:

u(x, t) = c3 + c2(λ±
√
(λ2 − 4µ))

(
A2

A1+A2((c1x+q(t)))
− λ

2

)
+ c2

(
A2

A1+A2((c1x+q(t)))
− λ

2

)2

(3.14)
where A1, A2, c1, c2 and c3 are arbitrary constants Λ1 = 1

2
((c1x + q(t))

√
(λ2 − 4µ))

and Λ2 =
1
2
((c1x+ q(t))

√(
−λ2 + 4µ

)
).

4 Conclusion and Remarks

In this article, we have established certain new solutions of the Shallow water wave
equation (3.1) by using generalized

(
G′

G

)
-expansion method. These solutions are ex-

pressed in terms of hyperbolic, trigonometric, and rational functions involving arbi-
trary parameters. Also, we have presented graphical representation of solutions (3.4),
(3.5) and (3.6) in Figure 1, Figure 2, Figure 3 respectively. In the similar way we
can represent graphically the behavior of other derived solutions. It is imperative to
state that some of our solutions are expressed in terms of physical parameter q(t)
and ρ(t) = t and it plays a crucial role as the remaining coefficients of equation (3.1)
have all been expressed in terms of it. In fact, the various other arbitrary constants
occurring in the solutions, along with q(t), ρ(t), provide further freedom to simulate
the desired physical situations. In almost all the cases the solutions obtained may
also help to recover certain solutions available in literature for the particular models
with constant coefficients. It is worth to mention here that the correctness of the
solutions has been checked with the aid of software MAPLE.
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